Two-Sample t-test Non-Homogenous Variances

Course:Statistics 1Lecturer:Dr. Courtney Pindling

Example

- Case:
 - Independent Samples: different variances
 - Sample: Compare means of two samples

Group 1	Group 2
N = 8	N =8
Mean, $M_1 = 3$	Mean, $M_2 = 4.5$
Std Dev, $S_{\gamma} = 1.51$	Std Dev, $S_2 = 3.21$
Variance, $S_1^2 = 2.29$	Variance, $S_2^2 = 10.29$
$\sum X = 24$	∑X = 36
$\sum X^2 = 88$	$\sum X^2 = 234$

FCritical Value

• $F_{cv} = 3.79$ (*F*-Dist. Table, $df_1 = 7$, $df_2 = 7$, a = 0.05)

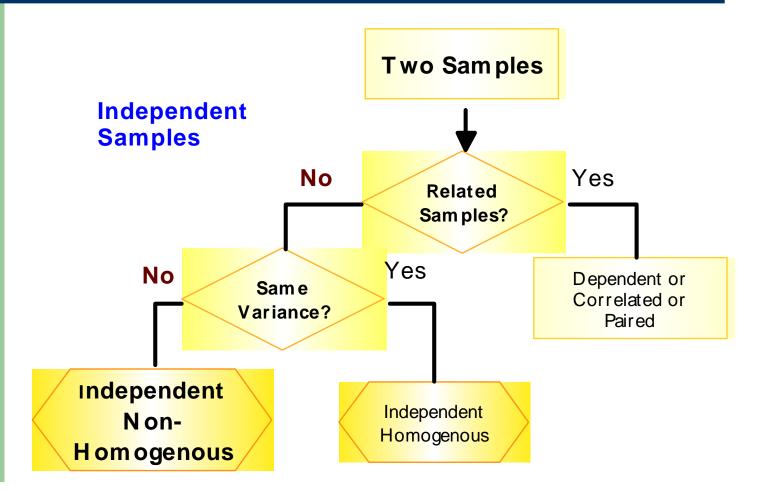
df 2	1	2	3	4	5	6	7	8	9	10	df 2
1	161.4462	199.4995	215.7067	224.5833	230.1604	233.9875	236.7669	238.8842	240.5432	241.8819	1
2	18.51276	19.00003	19.16419	19.24673	19.29629	19.32949	19.35314	19.37087	19.38474	19.39588	2
3	10.12796	9.552082	9.276619	9.117173	9.013434	8.940674	8.88673	8.845234	8.812322	8.785491	3
4	7.70865	6.944276	6.591392	6.388234	6.256073	6.163134	6.094211	6.041034	5.9988	5.964353	4
5	6.607877	5.786148	5.409447	5.192163	5.050339	4.950294	4.875858	4.818332	4.77246	4.735057	5
6	5.987374	5.143249	4.757055	4.533689	4.387374	4.283862	4.206669	4.146813	4.099007	4.059956	6
7	5.59146	4.737416	4.34683	4.120309	3.971522	3.865978	3.79	3.725717	3.676675	3.636529	7
8	5.317645	4.458968	4.06618	3.837854	3.687504	3.580581	3.50046	3.438103	3.388124	3.347168	8
9	5.117357	4.256492	3.862539	3.63309	3.481659	3.373756	3.29274	3.229587	3.18	3.137274	9

Test for Homogeneity of Variance

- $H_0: s_1^2 = s_2^2$ So, $H_a: s_1^2 \neq s_2^2$
- $F_{cv} = 3.79 \ (df_1 = 7, df_2 = 7 \text{ and } a = 0.05)$
- $F_{stat} = 4.5 (10.29/2.29 = 4.5)$
- Decision: Reject H₀ that variances are same
 Since F_{stat} > F_{cv}

Conclusion: Variances are <u>not</u> homogenous

Independent Samples with Non-Homogenous Variance



Degree of Freedom, df

- Underlying *t*-distribution
- Degree of freedom, *df*, defined by formula
- *df* = 10

Given: $n_1 = 8$, $s_1^2 = 2.29$

Given: $n_2 = 8$, $s_2^2 = 10.29$

$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1 - 1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2} = \frac{\left(\frac{229}{8} + \frac{1029}{8}\right)^2}{\left(\frac{229}{8}\right)^2 + \left(\frac{1029}{8}\right)^2} = 9.96 \simeq 10$$

Step 1: Hypotheses

 Null, H₀ (*no difference in means*) µ₁ - µ₂ = 0

 Alternative, H_a (Non-Directional) µ₁ - µ₂ ≠ 0

Step 2: Set Rejection Criterion

- Significance Level: a = 0.05
- Critical value: *t*-distribution, *df* = 10 (from Formula)
 - Two-tailed (non-directional)
 - $t_{cv} = 2.228$
 - Reject H_0 if $t_{stat} >= 2.228$

Step 3: Compute Test Statistics

Given: $n_1 = 8, M_1 = 3, s_1 = 1.51, s_1^2 = 2.29, \Sigma X = 24, \Sigma X^2 = 88$ Given: $n_2 = 8, M_2 = 4.5, s_1 = 3.21, s_1^2 = 10.29, \Sigma X = 36, \Sigma X^2 = 234$

Std Error:
$$s_{(M_1-M_2)} = \sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)} = \sqrt{\left(\frac{2.29}{8} + \frac{10.29}{8}\right)} = 1.25$$

Note: Standard Error Formula

Test statistics,
$$t = \frac{M_1 - M_2}{s_{(M_1 - M_2)}} = \frac{3 - 4.5}{1.25} = -1.2$$

Absolute value of $t_{stat} = 1.2$

Step 4: Confidence Interval

- CI = Statistics +/- Critical Value (Standard Error)
- Mean Difference, $M_D = -1.5$, Since 3 4.5
- $t_{cv} = 2.228$ (two-tailed, df = 10 and a = 0.05)
- Cl₉₅ = -1.5 +/- 2.228(1.25) = -4.285 to 1.285

Step 5: Effect Size

- ES = Mean Difference / Standard Error = $(M_1 M_2)/s$
- Calculated s^2 (pooled estimate) = 6.29
- So *s* = Sqrt(20) = 2.50
- ES = (3 4.5)/2.5 = -1.5/2.5 = -0.60; Use absolute value, d = 0.60
- **Conclusion**: Medium effect (about 0.6)

$$s^{2} = \frac{\left[\sum X_{1}^{2} - \frac{\left(\sum X_{1}\right)^{2}}{n_{1}}\right] + \left[\sum X_{2}^{2} - \frac{\left(\sum X_{2}\right)^{2}}{n_{2}}\right]}{n_{1} + n_{2} - 2} = \frac{\left[\frac{188 - \frac{576}{8}\right] + \left[\frac{234}{8} - \frac{1296}{8}\right]}{8 - 8 - 2}}{8 - 8 - 2} = 6.29$$

Step 6: Decision

- Homogeneity of Variance assumption <u>not</u> met
- **<u>Do not</u>** Reject H_0 :
 - 1. $t_{stat} < t_{cv}$ or 1.2 < 2.228
 - 2. Hypothesized population difference of 0 is within CI_{95}
 - Cl₉₅: -4.285 to 1.285
 - 3. $ES = 0.60 \ge 0.6$, is Medium effect
- **Conclusion**: The group 1 mean is <u>not</u> significantly different from group 2 mean

SPSS Outputs

Group Statistics

	Group2	N	Mean	Std. Deviation	Std. Error Mean
Words	1.00	8	3.0000	1.51186	.53452
	2.00	8	4.5000	3.20713	1.13389

Independent Samples Test

			Test for Variances	t-test for Equality of Means								
							Mean	Std. Error	95% Confidence Interval of the Difference			
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper		
Words	Equal variances assumed	8.400	.012	-1.197	14	.251	-1.50000	1.25357	-4.18863	1.18863		
	Equal variances not assumed			-1.197	9.965	.259	-1.50000	1.25357	-4.29446	1.29446		

F-Test: Reject null hypothesis - <u>not</u> same variance, since $F_{sig} = 0.012 < 0.05$ **t-Test:** Don't reject null – means are same, since:

- **1**. $t_{test} = 1.197 < t_{cv} = 2.228$ (two-tailed, df = 10, a = 0.05)
- **2.** *p*-value = **0.259** > **0.05** and **3.** Cl₉₅ contains **0**