Two-Sample t-test Homogenous Variance

Course:Statistics 1Lecturer:Dr. Courtney Pindling

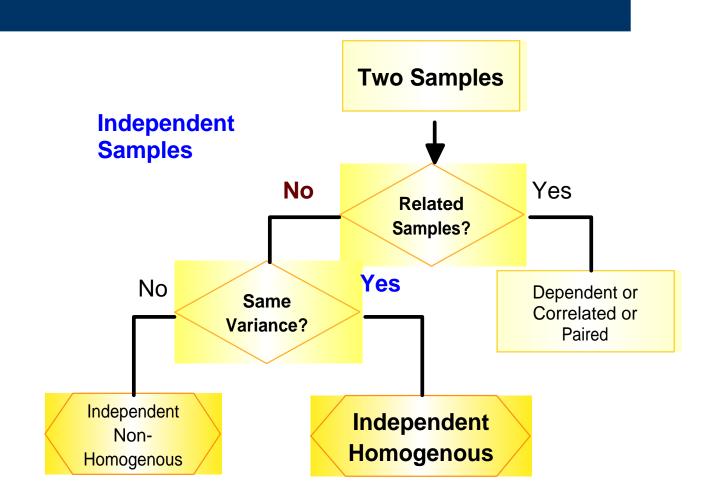
Example

- Case:
 - Independent Samples: Same variance
 - Sample: Word Recall with and without mental images

Group 1 (images)	Group 2 (no images)
<i>N</i> = 10	N=10
Mean, $M_1 = 26$	Mean, $M_2 = 18$
Std Dev, $S_1 = 4.71$	Std Dev, $S_2 = 4.22$
Variance, $S_{1^{2}} = 22.22$	Variance, $S_2^2 = 17.78$
∑X = 260	∑X = 180
$\sum X^2 = 6960$	$\sum X^2 = 3400$

FCritical Value

•
$$F_{cv} = 3.18$$
 (*F*-Dist. Table, $df_1 = 9$, $df_2 = 9$, $a = 0.05$)


df 2	1	2	3	4	5	6	7	8	9	10	df 2
1	161.4462	199.4995	215.7067	224.5833	230.1604	233.9875	236.7669	238.8842	240.5432	241.8819	1
2	18.51276	19.00003	19.16419	19.24673	19.29629	19.32949	19.35314	19.37087	19.38474	19.39588	2
3	10.12796	9.552082	9.276619	9.117173	9.013434	8.940674	8.88673	8.845234	8.812322	8.785491	3
4	7.70865	6.944276	6.591392	6.388234	6.256073	6.163134	6.094211	6.041034	5.9988	5.964353	4
5	6.607877	5.786148	5.409447	5.192163	5.050339	4.950294	4.875858	4.818332	4.77246	4.735057	5
6	5.987374	5.143249	4.757055	4.533689	4.387374	4.283862	4.206669	4.146813	4.099007	4.059956	6
7	5.59146	4.737416	4.34683	4.120309	3.971522	3.865978	3.787051	3.725717	3.676675	3.636529	7
8	5.317645	4.458968	4.06618	3.837854	3.687504	3.580581	3.50046	3.438103	3.388124	3.347168	8
9	5.117357	4.256492	3.862539	3.63309	3.481659	3.373756	3.29274	3.229587	3.18	3.137274	9

Test for Homogeneity of Variance

- $H_0: s_1^2 = s_2^2$ So, $H_a: s_1^2 \neq s_2^2$
- $F_{cv} = 3.18 \ (df_1 = 9, df_2 = 9 \text{ and } a = 0.05)$
- $F_{stat} = 1.25 (22.22/17.78 = 1.25)$
- Decision: <u>Don't Reject</u> H₀ that variances are same
 - Since $F_{stat} < F_{cv}$ or 1.25 < 3.18

Conclusion: Variances are homogenous

Independent Samples with Homogenous Variance

Step 1: Hypotheses

 Null, H₀ (*no difference in means*) µ₁ - µ₂ = 0

 Alternative, H_a (Non-Directional) µ₁ - µ₂ ≠ 0

Step 2: Set Rejection Criterion

- Significance Level: a = 0.05
- $df = n_1 + n_2 2 = 10 + 10 2 = 18$
- Critical value (*t*-distribution, df = 18)
 - Two-tailed (non-directional)
 - $t_{cv} = 2.101$
 - Reject H_0 if $t_{stat} >= 2.101$

Step 3: Compute Test Statistics

Given: $n_1 = 10, M_1 = 26, s_1 = 4.71, s_1^2 = 22.22, \Sigma X = 260, \Sigma X^2 = 6960$ Given: $n_2 = 10, M_2 = 18, s_1 = 4.22, s_1^2 = 17.78, \Sigma X = 180, \Sigma X^2 = 3400$ $s^2 = \frac{(\Sigma X_1^2 - \frac{(\Sigma X_1)^2}{n_1}) + (\Sigma X_2^2 - \frac{(\Sigma X_2)^2}{n_2})}{(\Sigma X_1^2 - \frac{(\Sigma X_2)^2}{n_2})} = \frac{(6960 - \frac{67600}{10}) + (3400 - \frac{32400}{10})}{(10 - 10 - 2)} = 20$

Std Error:
$$s_{(M_1 - M_2)} = \sqrt{s^2(\frac{1}{n_1} + \frac{1}{n_2})} = \sqrt{20(\frac{1}{10} + \frac{1}{10})} = 2$$

Test statistics, $t = \frac{M_1 - M_2}{s_{(M_1 - M_2)}} = \frac{26 - 18}{2} = 4$

Step 4: Confidence Interval

- CI = Statistics +/- Critical Value (Standard Error)
- Mean Difference, $M_D = 8$, Since 26 18
- $t_{cv} = 2.101$ (two-tailed, df = 18 and a = 0.05)
- Cl₉₅ = 8 +/- 2.101(2) = 3.798 **to** 12.20

Step 5: Effect Size

- ES = Mean Difference / Standard Error = $(M_1 M_2)/s$
- Calculated s^2 (pooled estimate) = 20
- So *s* = Sqrt(20) = 4.47
- ES = (26 18)/4.47 = 8/4/47 = 1.79
- **Conclusion**: A very large treatment effect (> 0.8)
 - Group using mental images recalled significantly more words than the group with no images

Step 6: Decision

- Met homogeneity of Variance assumption
- Reject H_0 :
 - 1. $t_{stat} > t_{cv}$ or 4 > 2.101
 - 2. Hypothesized population difference of 0 is Outside CI_{95}
 - Cl₉₅: 3.80 to 12.20
 - 3. ES = 1.79 > 0.8, is large
- **Conclusion**: The group using mental images recalled significantly more words than the group with no images

SPSS Outputs

Group Statistics

					Std. Error
	Group2	Ν	Mean	Std. Deviation	Mean
Words	1.00	10	26.0000	4.71405	1.49071
	2.00	10	18.0000	4.21637	1.33333

Independent Samples Test

			Test for Variances	t-test for Equality of Means							
							Mean	Std. Error	95% Confidence Interval of the Difference		
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper	
Words	Equal variances assumed	.384	.543	4.000	18	.001	8.00000	2.00000	3.79816	12.20184	
	Equal variances not assumed			4.000	17.780	.001	8.00000	2.00000	3.79443	12.20557	

F-Test: <u>Do not</u> reject null hypothesis - assume_same variance, since $F_{sig} = 0.543 > 0.05$ *t*-Test: Reject null hypothesis – so means are not same, since:

1. $t_{test} = 4.0 > t_{cv} = 2.101$ (two-tailed, df = 18, a = 0.05)

2. *p*-value = 0.001 < 0.05 and

3. Cl₉₅ <u>Do not</u> contains 0